OXYGENATION OF 4-(N-ALKYLIMINO)METHYL-2,6-DI-t-BUTYLPHENOLS MEDIATED BY Co(II)-SCHIFF BASE COMPLEX

A. Nishinaga,* T. Shimizu, and T. Matsuura

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

4-(N-Alkylimino)methyl-2,6-di- \underline{t} -butylphenols ($\underline{1}$), Schiff bases of 3,5-di- \underline{t} -butyl-4-hydroxybenzaldehyde can be oxygenated in the presence of Co(Salpr), a five coordinate Co(II)-Schiff base complex to give N-alkyl-3- \underline{t} -butyl-5-formyl-2-hydroxy-2-pivaloyl-1,2-dihydropyridines ($\underline{2}$) as the main product together with 3-formyl-2,5-di- \underline{t} -butyl-2,4-cy-clopentadienone ($\underline{3}$) and 2,6-di- \underline{t} -butyl-4-formyl-6-hydroxy-4,5-epoxy-2-cyclohexenone ($\underline{4}$). These products result from dioxygen incorporation into the ortho position of $\underline{1}$.

Five coordinate Co(II)-Schiff base complexes, Co(Salpr) and its derivatives have been shown to mediate regioselective dioxygen incorporation into \underline{t} -butylated phenols depending on the nature of substituent of the substrate: 4-alkyl-2,6-di- \underline{t} -butylphenols are oxygenated exclusively at the para position whereas with 4-aryl-2,6-di- \underline{t} -butylphenols dioxygen is incorporated selectively into the ortho position. In the case of 4-(N-arylmethylene)amino-2,6-di- \underline{t} -butylphenols, the imino carbon in the side chain is selectively oxygenated. Although 3,5-di- \underline{t} -butyl-4-hydroxybenzaldehyde is normally unsusceptible to the oxygenation, we now find that Schiff bases of this phenol, 4-(N-al-kylimino)methyl-2,6-di- \underline{t} -butylphenols ($\underline{1}$) are easily oxygenated in the presence of Co(Salpr) to give new products resulting from intramolecular decomposition of peroxidic intermediates in which dioxygen is incorporated into the ortho position of $\underline{1}$.

The phenols $\underline{1}$ were obtained by the condensation of 3,5-di- \underline{t} -butyl-4-hydroxybenzaldehyde with alkylamines in nearly quantitative yield. The oxygenation was carried out by bubbling dioxygen through a solution of equimolar amounts of $\underline{1}$ and Co(Salpr) in $\mathrm{CH_2Cl_2}$ at 0 °C. Separation of the resulting products (silica gel layer chromatography developed with $\mathrm{CH_2Cl_2}$) gave N-alkyl-3- \underline{t} -butyl-5-formyl-2-hydroxy-2-pivaloyl-1,2-dihydropyridine ($\underline{2}$), 3-formyl-2,5-di- \underline{t} -butyl-2,4-cyclopentadienone ($\underline{3}$), and 2,6-di- \underline{t} -butyl-4-formyl-6-hydroxy-4,5-epoxy-2-cyclohexenone ($\underline{4}$). The results are sum-

marized in Table 1. In all cases except for $\underline{l}\underline{e}$, the formation of $\underline{2}$ was predominant. Analytical and spectral data of $\underline{2}$ (Table 2) are in good agreement with the structure. The structure of $\underline{2}\underline{a}$

Table 1. Oxygenation of 1 with Co(Salpr).

1	Conversion ^b (%)	Pr <u>2</u>	oduct, <u>3</u>	Yield 4	(%) ^b Others ^c
<u>la</u>	72	70	trace	27	3
<u>1</u> ₽	89	81	trace	14	5
<u>1</u> ⊆	85	65	15	15	5
<u>1₫</u>	90	70	15	10	5
<u>l</u> e	85	- ^d	40	15	35 ^e

^a Conditions: $\underline{1}$ (1 mmol), Co(Salpr) (1.1 mmol), CH₂Cl₂ (20 ml), O₂ for 2 h. ^b Determined by NMR. ^c Not identified. ^d The compound $\underline{2}\underline{e}$ seemed to be formed (ca. 10%) but not confirmed. ^e Containing $\underline{6}$ (R = \underline{t} -Bu) (20%).

was confirmed by its X-ray analysis. 4 The structures of new products $\underline{3}$ and $\underline{4}$ were determined by their analytical and spectral data. 5

Treatment of $\underline{2}\underline{a}$ with an equimolar amount of \underline{t} -BuOK and of other $\underline{2}$ with an excess of \underline{t} -BuOK in \underline{t} -BuOH at room temperature under N $_2$ followed by an acid treatment gave the formylcyclopentadienone (\underline{a}) in quantitative yield. Thus, the present results provide a

unique method for the preparation of $\underline{3}$ from 3,5-di- \underline{t} -buty1-4-hydroxybenzaldehyde \underline{via} oxygenation. This is analogous to the oxygenation of 4- \underline{t} -buty1- and 4-ary1-2,6-di- \underline{t} -buty1phenols giving rise

Table 2. Physical Data of $\underline{\underline{2}}$.

<u>²</u> ª	mp (°C)	IR(Nu [∨] oн	jol), cm ⁻¹ ∨C=0	<u>t</u> -Bu	H NMR(CDCl ₃), δ CH=C-CH=C-N ^b	СНО	$\lambda_{\text{max}} (C_6 H_{12})$ nm (log ϵ)
2 <u>a</u>	117-118	3370	1690, 1630	1.18, 1.32	6.08	6.80, 6.87	8.97	387 (3.39)
<u>=</u> = 2b	131-133	3420	1680, 1630	1.14, 1.25	5.85	6.80, 6.88	9.04	397 (3.38)
<u>2</u> ⊆	99-101	3380	1690, 1630	1.15, 1.25	5.95	6.85, 7.02	9.07	390 (3.36)
 2₫	96-98	3420	1680, 1630	1.15, 1.23	5.97	6.85, 7.03	9.03	396 (3.35)

^a All the products show satisfactory analytical results. b d, d; J = 1.0 Hz.

to the corresponding cyclopentadienones.⁶, ⁷

When 2a was treated with an excess of \underline{t} -BuOK in \underline{t} -BuOH, 4-(N-benzylideneamino)methylene-2,5-di- \underline{t} -butyl-2-cyclopentenone $(\underline{5})^8$ was obtained in quantitative yield. Treatment of $\underline{2}$ in MeOH containing KOH at room temperature, on the other hand, resulted in deformylation to give 4-(N-alkyl-amino)methylene-2,5-di- \underline{t} -butyl-5-hydroxy-2-cyclopentenones $(\underline{6})^9$ in quantitative yield.

All the present results may be reasonably explained by the reaction scheme depicted in the following diagram, where unusual decomposition of peroxidic intermediates 7 and 8 is remarkable.

$$\frac{1}{2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{N-R}} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{N-R}} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{CH}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{Ch}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{Ch}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{Ch}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{Ch}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2\text{Cl}_2} \xrightarrow{\text{Ch}_2\text{Cl}_2\text$$

Although o-peroxyquinolato Co(III) complexes of type $\underline{7}$ from other phenols are normally stable in CH_2Cl_2 , on characteristic signals for $\underline{7}$ were observed in the NMR spectrum of the reaction mixture before work-up. The unusual instability of $\underline{7}$ may be attributable to the iminomethyl group which would accelerate ionic dissociation of Co-O bond leading to the dioxetane intermediate $\underline{8}$. Asymmetric cleavage of the peroxy bond ($\underline{8}\underline{b}$) giving rise to epoxy-o-quinols of type $\underline{1}\underline{3}$ is the normal case as seen in base-catalyzed oxygenation of 2,6-di-t-butylphenols. $\underline{6}$, $\underline{10}$ However, as the product ratio $\underline{4}$ to $\underline{2}$ and $\underline{3}$ was not changed with reaction time, it may be no doubt that the formation

of $\underline{2}$ and $\underline{3}$ results from symmetric cleavage of the dioxetane intermediate ($\underline{8a}$) but not from the asymmetric one. Such a symmetric cleavage of dioxetane intermediate derived from peroxyquinols is the first example, providing an analogous cleavage type to that considered for the reaction of a dioxygenase, metapyrocatechase. It may also be clear that the formation of $\underline{3}$ involves the intermediates $\underline{11}$ and $\underline{12}$ taking into account the formations of $\underline{6}$ and $\underline{5}$ which must be formed by deprotonation from the benzyl group in $\underline{12}$ (R = CH₂Ph). The intermediate of type $\underline{11}$ has been confirmed in base-catalyzed oxygenation of 4-aryl-2,6-di- \underline{t} -butylphenols giving rise to the corresponding cyclopentadienones. The low yield of $\underline{2}\underline{e}$ is probably due to steric hindrance of the \underline{t} -Bu group against nucleophilic reaction of the amino nitrogen ($\underline{9}\underline{a}$), and consequently contribution of $\underline{9}\underline{b}$ becomes predominant leading to a high yield of $\underline{3}$.

References and Notes

- 1) A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett., 2893 (1979).
- 2) A. Nishinaga, K. Nishizawa, H. Tomita, and T. Matsuura, J. Am. Chem. Soc., 99, 1287 (1977).
- A. Nishinaga, T. Shimizu, and T. Matsuura, Tetrahedron Lett., 1265 (1980).
- 4) A. Nishinaga, T. Shimizu, K. Hirotsu, and T. Matsuura, to be published.
- 5) The compound $\underline{3}$: orange prisms, mp 28-29 °C; 1 H NMR(CDCl $_{3}$) & 1.15 (s, 9H), 1.40 (s, 9H), 7.16 (s, 1H), 10.48 (s, 1H); IR(Nujol), 1715, 1665 cm $^{-1}$; UV(C $_{6}$ H $_{12}$), 416 nm (&, 570); Anal. C, \pm 0. 2%; H, \pm 0.2%. The compound $\underline{4}$: colorless liquid, bp ca. 75 °C/10 $^{-2}$ mmHg; 1 H NMR(CDCl $_{3}$) & 0.95 (s, 9H), 1.23 (s, 9H), 4.08 (d, 1H, J=0.7 Hz), 4.13 (s, 1H, 0H), 7.13 (d, 1H, J=0.7 Hz), 8.97 (s, 1H); IR(Nujol), 3500, 1725, 1675 cm $^{-1}$; Anal. C, \pm 0.2%; H, \pm 0.2%.
- 6) A. Nishinaga, T. Itahara, T. Matsuura, A. Rieker, D. Koch, K. Albert, and P. B. Hitchcock, J. Am. Chem. Soc., 100, 1826 (1978).
- A. Nishinaga, T. Shimizu, and T. Matsuura, J. Org. Chem., 44, 2983 (1979).
- 8) The compound $\underline{5}$: yellow liquid, bp ca. 135 °C/10⁻² mmHg; ¹H NMR(CDCl₃) & 1.04 (s, 9H), 1.28 (s, 9H), 2.60 (s, 1H), 6.88 (s, 1H), 7.3-8.0 (m, 5H), 8.23 (s, 1H), 8.37 (s, 1H); IR(Nujol) 1695 cm⁻¹; Anal. C, $\pm 0.3\%$; H, $\pm 0.2\%$; N, $\pm 0.3\%$.
- 9) For example, $\underline{6}$ (R = CH₂Ph): light yellow prisms, mp 135-137 °C; 1 H NMR(CDCl₃) δ 0.97 (s, 9H), 1.17 (s, 9H), 2.62 (s, 1H, 0H), 4.26 (d, 2H, J=6 Hz), 5.04 (m, 1H, NH), 6.23 (d, 1H, J=12 Hz), 7.32 (s, 5H), 7.35 (s, 1H); IR(Nujol), 3440, 3370, 1650 cm⁻¹; Anal. C, \pm 0.1%; H, \pm 0.2%; N, \pm 0.1%.
- 10) A. Nishinaga, T. Itahara, T. Shimizu, and T. Matsuura, J. Am. Chem. Soc., 100, 1820 (1978).
- 11) M. Nozaki, "Molecular Mechanisms of Oxygen Activation", Ed. O. Hayaishi, Academic Press, Inc., New York and London, 1974, pp 144-151.

(Received in Japan 17 July 1980)